Semiconducting organic-inorganic nanocomposites by intimately tethering conjugated polymers to inorganic tetrapods.
نویسندگان
چکیده
Semiconducting organic-inorganic nanocomposites were judiciously crafted by placing conjugated polymers in intimate contact with inorganic tetrapods via click reaction. CdSe tetrapods were first synthesized by inducing elongated arms from CdSe zincblende seeds through seed-mediated growth. The subsequent effective inorganic ligand treatment, followed by reacting with short bifunctional ligands, yielded azide-functionalized CdSe tetrapods (i.e., CdSe-N3). Finally, the ethynyl-terminated conjugated polymer poly(3-hexylthiophene) (i.e., P3HT-[triple bond, length as m-dash]) was tethered to CdSe-N3 tetrapods via a catalyst-free alkyne-azide cycloaddition, forming intimate semiconducting P3HT-CdSe tetrapod nanocomposites. Intriguingly, the intimate contact between P3HT and CdSe tetrapod was found to not only render the effective dispersion of CdSe tetrapods in the P3HT matrix, but also facilitate the efficient electronic interaction between these two semiconducting constituents. The successful anchoring of P3HT chains onto CdSe tetrapods was substantiated through Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy measurements. Moreover, the absorption and photoluminescence studies further corroborated the intimate tethering between P3HT and CdSe tetrapods. The effect of the type of bifunctional ligands (i.e., aryl vs. aliphatic ligands) and the size of tetrapods on the device performance of hybrid organic-inorganic solar cells was also scrutinized. Interestingly, P3HT-CdSe tetrapod nanocomposites produced via the use of an aryl bifunctional ligand (i.e., 4-azidobenzoic acid) exhibited an improved photovoltaic performance compared to that synthesized with their aliphatic ligand counterpart (i.e., 5-bromovaleric acid). Clearly, the optimal size of CdSe tetrapods ensuring the effective charge transport in conjunction with the good dispersion of CdSe tetrapods rendered an improved device performance. We envision that the click-reaction strategy enabled by capitalizing on two consecutive effective ligand exchanges (i.e., inorganic ligand treatment and subsequent bifunctional ligand exchange) to yield intimately connected organic-inorganic nanocomposites provides a unique platform for developing functional optoelectronic devices.
منابع مشابه
Semiconducting conjugated polymer-inorganic tetrapod nanocomposites.
Cadmium telluride (CdTe) tetrapods were synthesized via multiple injections of the Te precursor by utilizing bifunctional ligands. Subsequently, tetrapod-shaped semiconducting inorganic-organic nanocomposites (i.e., P3HT-CdTe tetrapod nanocomposites) were produced by directly grafting conjugated polymer ethynyl-terminated poly(3-hexylthiophene) (i.e., P3HT-≡) onto azide-functionalized CdTe tetr...
متن کاملAn unconventional route to monodisperse and intimately contacted semiconducting organic-inorganic nanocomposites.
We developed an unconventional route to produce uniform and intimately contacted semiconducting organic-inorganic nanocomposites for potential applications in thermoelectrics. By utilizing amphiphilic star-like PAA-b-PEDOT diblock copolymer as template, monodisperse PEDOT-functionalized lead telluride (PbTe) nanoparticles were crafted via the strong coordination interaction between PAA blocks o...
متن کاملIn-situ growth of CdSe-P3HT nanocomposites
Introduction CdSe-P3HT (poly(3-hexylthiophene))) nanocomposites are studied for their application in hybrid solar cells. Semiconductor inorganic/organic hybrid solar cells offer many advantages relative to their non-hybrid counterparts. They have the advantages of conjugated polymers such as light weight, flexibility, abundance of resources, the potential for roll-to-roll and non-vacuum process...
متن کاملCrafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells.
Semiconductor organic-inorganic hybrid solar cells incorporating conjugated polymers (CPs) and nanocrystals (NCs) offer the potential to deliver efficient energy conversion with low-cost fabrication. The CP-based photovoltaic devices are complimented by an extensive set of advantageous characteristics from CPs and NCs, such as lightweight, flexibility, and solution-processability of CPs, combin...
متن کاملSemiconducting nanocrystals, conjugated polymers, and conjugated polymer/nanocrystal nanohybrids and their usage in solar cells
As one of the major renewable energy sources, solar energy has the potential to become an essential component of future global energy production. With the increasing demand in energy, the harvesting of solar energy using inexpensive materials and manufacturing methods has attracted considerable attention. Organic/ inorganic (i.e., conjugated polymer/nanocrystal (CP/NC)) nanohybrid solar cell, i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 8 16 شماره
صفحات -
تاریخ انتشار 2016